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a b s t r a c t

In this work we study the problem of multi-robot coverage of a planar region when the sensory field
used to approximate the density of event appearance is not known in advance. We address the problem
by considering two different communication architectures: client–server and peer-to-peer. In the first
architecture the robots are allowed to communicate with a central server/base station. In the second the
robots communicate among neighboring peers by means of a gossip protocol in a distributed fashion.
For both the architectures, we resort to nonparametric Gaussian regression approach to estimate the
unknown sensory field of interest from a collection of noisy samples. We propose a probabilistic control
strategy based on the posterior of the estimation error variance, which lets the robots to estimate
the true sensory field with any arbitrary accuracy while simultaneously computing and exploiting the
corresponding centroidal Voronoi partitions. We also present a numerically efficient approximation
based on a spatial discretization to trade-off the accuracy of the estimated map against the required
computational complexity. This trade-off can be tuned based on explicit estimation error bounds which
depend on the spatial resolution and the Gaussian kernel parameters. Finally, we test the proposed
solutions via extensive numerical simulations.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The growing sensing capabilities and the development of
autonomous robot vehicles able to coordinate themselves to
achieve desired tasks are expected to revolutionize our capability
to control the physical environment (Leonard et al., 2007). In
this context, the coverage of an area of interest is one important
and interesting task. In many applications the ability of a group
of robots to sense and automatically cover the surrounding
environment to maximize the likelihood of detecting an event
of interest is appealing. On the other hand, knowledge about
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the spatial distribution of the event of interest is needed. As
an example, consider a group of robots monitoring a forest to
detect possible wildfires. Since the probability of a wildfire is
likely to be proportional to the temperature, the robots should
more densely cover areas with higher temperature which, if not
known in advance, must be reconstructed from collected samples.
At the same time, to minimize the time to reach a wildfire, the
robots should station near the centroids of the partitioned area.
This highlights the issue of simultaneous estimation and coverage
associated with the problem of interest.

In this work we analyze the problem of covering the area of in-
terest while estimating the non-uniform measurable field of event
appearance from noisymeasurements collected by the robots. There
has been considerable effort in the analysis of estimation and cov-
erage separately. Historically, classical identification techniques
are based on parametric estimation paradigms, like ML and PEM
(Ljung, 1999). However, these techniques often require persistent
excitation to ensure convergence of the parameter (Choi, Oh, &
Horowitz, 2009) and may be unsatisfactory when tested on exper-
imental data (Pillonetto, Chiuso, & De Nicolao, 2011). To overcome
these issues techniques, grouped under the nonparametric learning
framework, have been recently developed. The main idea is to ex-
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ploit black box models to estimate a function from examples col-
lected on input locations drawn from a fixed probability sensory
function (Pillonetto et al., 2011; Poggio & Girosi, 1990). The draw-
back is that the computational complexity growsunbounded as the
cube of the number of collected samples. Thus, efficient approaches
(Xu, Choi, Dass, & Maiti, 2015) based on, e.g., suitable measure-
ments truncation (Xu, Choi, Dass, & Maiti, 2012; Xu, Choi, & Oh,
2011) or Gaussian Markov random fields (Xu, Choi, Dass, & Maiti,
2013), have been proposed.

Classical approaches to the coverage problem assume the
sensory function to be perfectly known in advance. In this spirit,
works (Cortés & Bullo, 2005; Cortes, Martinez, Karatas, & Bullo,
2004; Durham, Carli, Frasca, & Bullo, 2012) exploit the concept
of Centroidal Voronoi partitioning and present solutions based
on gradient descent strategies. In Leonard and Olshevsky (2011)
a policy for the coverage of a 1-D environment is presented. In
Davison, Schwemmer, and Leonard (2012) a limited number of
noise-free samples are considered yet no convergence results are
presented. The work (Davison, Leonard, Olshevsky, & Schwemmer,
2015) extends (Davison et al., 2012; Leonard &Olshevsky, 2011) by
proving convergence in probability to the optimal configuration.
A distributed solution in the presence of known time-varying
functions is given in Lee, Diaz-Mercado, and Egerstedt (2015). A
different line of research deals with adaptive/optimal sampling
strategies to enhance estimation accuracy (Xu & Choi, 2011). In
particular, in Xu et al. (2011) is proposed a distributed efficient
solution, where each robot independently estimates the function
of interest based on a truncated subset of its own measurements
and those gathered by its neighbors. In Xu et al. (2013) instead,
each robot is in charge of monitoring a fixed area of interest, thus
not requiring any exchange of measurements between robots.

Some results to the coupled problem, i.e. when both coverage
and estimation are considered, have appeared recently. In Choi,
Lee, and Oh (2008) the authors exploit Kalman filtering to
perform Gaussian estimation. The final objective is to perform
estimation and maximum seeking of a function of interest by
means of a coordinated group of robots. They propose a two stage
algorithm in which, first, based on information on the posterior
variance, the robots are spread throughout the space in order to
achieve a good estimate of the sensory function; once achieved a
predefined threshold, the robots are driven towards themaximum
of the estimated function. However, no convergence results during
the estimation phase are shown. In Choi and Horowitz (2010)
the authors propose a strategy to drive a formation of robots
towards the coverage of an area of interest characterized by an
unknown probability density function of event appearance. The
result builds on learning diffeomorphic functions with kernels.
However, it applies only to one dimensional environments and,
if needed, it does not provide any estimate of the function
of interest. In Schwager, Rus, and Slotine (2009) the authors
propose an algorithm for simultaneous distributed consensus-like
parametric estimation from noise-freemeasurements and optimal
coverage based on centroidal Voronoi partitioning. However, to
prove estimation convergence an infinite amount of noise-free
measurements are assumed to be collected in finite time.

In this work, of which a preliminary version can be found
in Carron et al. (2015), we analyze the problem of simultaneous
estimation and coverage. The main contribution is twofold: the
first is to consider a strategy that smoothly moves from estimation
to coverage at the benefit of better transient behavior as compared
to traditional approaches. The second contribution is to exploit
the better estimation performance of non-parametric Gaussian
regression as compared to parametric approaches while being
able to bound its computational complexity. More specifically, we
consider two different communication architectures to address the
problemboth in a centralized aswell as in a distributed framework,
namely client–server and peer-to-peer (p2p), respectively. In the
client–server architecture (even referred to as one-to-base station
communication (Pater, Frasca, Durham, Carli, & Bullo, 2016)) the
robots can communicate with a server/base station. In the p2p
architecture robots are allowed to communicate with neighboring
peers by means of a gossip protocol. The goal is to perform
nonparametric estimation of an unknown sensory distribution
function from noisy samples while driving the robots to optimally
cover an area of interest. This is achieved via a probabilistic control
strategy which allows the robots to seamless transition between
estimation and coverage. Differently from the standard approach
(Choi et al., 2008), our control never completely switches from the
estimation to the coverage phase but always trade-offs between
them in order to achieve the best solution in terms of estimation
and coverage. This (i) let us prove convergence in probability of the
estimated function to the true one. As so,we obtain a final coverage
configuration which is arbitrarily close to a partitioning obtained
with the exact prior knowledge of the sensory function. Moreover,
(ii) the strategy, compared to threshold-based approaches, e.g., in
the same spirit of the algorithm proposed in Choi et al. (2008),
can lead to smaller average coverage time. To alleviate the
computational burden needed to implement the nonparametric
estimation procedure, we also propose an alternative algorithm,
based on a spatial discretization, to trade-off between accuracy on
the estimated map and computational requirements.

The remainder of the paper is as follows. Section 2, recalls
the necessary preliminaries. Section 3 contains the problem at
hand. Sections 4–6 present the server-based algorithm, its efficient
version and the distributed solution with their convergence
analysis, respectively. Section 7 presents compelling simulations
to test the proposed solution against other possible strategies as
well as in the presence of practical limitations. Section 8 concludes
the paper. All the proofs can be found in Appendix.

2. Preliminaries

2.1. Voronoi partitions

Let X ⊂ R2 be compact and convex. Let µ : X → R>0 be a
distribution sensory function defined over X . Within the context
of this paper, a partition of X is a collection of N convex polygons
P = (P1, . . . , PN) with disjoint interiors whose union is X .
Given the list ofN distinct points inX , x = (x1, . . . , xN), we define
the Voronoi partition W (x) = (W1(x), . . . , WN(x)) generated by x
as

Wi(x) =

q ∈ X | ∥q − xi∥ ≤ ∥q − xj∥, ∀j ≠ i


(1)

∥ · ∥ being the Euclidean norm, which can be shown to be
convex (Du, Faber, & Gunzburger, 1999). Given a partition P =

(P1, . . . , PN), for each region Pi, i ∈ {1, . . . ,N}, we define its
centroidwith respect to the sensory function µ as

ci(Pi) =


Pi

µ(q)dq
−1 

Pi

qµ(q)dq.

We denote with c(P) = (c1(P1), . . . , cN(PN)) the vector of
regions centroids. A partition P = (P1, . . . , PN) is said to be a
Centroidal Voronoi partition of the pair (X , µ) if P = W (c(P)),
i.e., P coincides with the Voronoi partition generated by c(P).
Given a partition P = (P1, . . . , PN), a sensory function µ and
a set of pints x = (x1, . . . , xN), we introduce the cost function
H(P, x, µ) defined as

H(P, x, µ) =

N
i=1


Pi

∥q − xi∥2µ(q)dq. (2)
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Observe that the cost H(P, c(P), µ) coincides with the locational
optimization function defined in Cortes et al. (2004). It can be
shown that, for a fixed sensory function µ, the set of local minima
of H(·, c(·), µ) coincides with the Centroidal Voronoi partitions of
the pair (X , µ) (Du et al., 1999).

2.2. Coverage control algorithm

Let X ⊂ R2 be a convex and closed polygon and let µ :

X → Rbe a sensory function. Consider the following optimization
problem

min
P

H(P, c(P), µ).

The coverage algorithmwe consider is a version of the classic Lloyd
algorithm (Lloyd, 1982), which, given an initial condition P(0),
consists of:

PL(k + 1) = W (c(PL(k))), (3)

where the upperscript L indicates the sequence generated by
the Lloyd algorithm. That is, (i) it computes the centroids c(P)

of the current partition and (ii) updates P to the partition
W (c(P)). Clearly, by construction PL(k) are all Voronoi partitions
for k ≥ 1. It can be shown (Cortes et al., 2004) that the
function H(P, c(P), µ) is monotonically non-increasing along
the solutions of (3) and that all the solutions of (3) converge
asymptotically to the set of centroidal Voronoi partitions. It is
well known (Cortes et al., 2004) that the set of centroidal Voronoi
partitions of the pair (X , µ) are the critical points of the coverage
function H(P, c(P), µ).

2.3. Nonparametric estimation

Assume µ : X → R is a Gaussian random field of zero
mean and covariance, even referred to as kernel, K : X × X →

R≥0. According to standard notation [] we denote the Gaussian
random field as µ ∼ N (0, K). Assume to have a set of m noisy
measurements of the form y(h)

= µ(x(h)) + ν(h), where ν(h)
∼

N (0, σ 2) is zero mean Gaussian noise with variance σ 2. Then, by
defining the information set I as

I =


x(h), y(h)
| h ∈ {1, . . . ,m}


,

that is the set containing all the m input locations defined as the
pairs (x(h), y(h)), as show in Cucker and Smale (2001) and Tikhonov
and Arsenin (1977), the minimum variance estimate of µ given I
can be computed as:

µ(x) = E [µ(x)|I] =

m
h=1

c(h) K(x(h), x), x ∈ X , (4)

E being the expectation operator, where the coefficients c(h)’s are
given byc(1)

...

c(m)

 = (K̄ + σ 2I)−1

y(1)

...

y(m)

 ,

K̄ =

K(x(1), x(1)) · · · K(x(1), x(m))
...

...

K(x(m), x(1)) · · · K(x(m), x(m))

 .
Moreover, the a posteriori variance of the estimate, in a generic
location x ∈ X , is given by Anderson and Moore (2012)

V (x) = Var [µ(x)|I] = K(x, x)
−

K(x(1), x) · · · K(x(m), x)


× (K̄ + σ 2I)−1

K(x(1), x)
...

K(x(m), x)

 . (5)

Next, we introduce a useful result which, under the assumption
that the estimated sensory function µ converges to the true
function µ, states that the centroidal Voronoi coverage algorithm
which exploits the estimated function mimics in probability the
behavior of the standard Lloyd algorithm, which uses the true µ,
with arbitrary accuracy. Namely, if the algorithms are initialized
from the same configuration, then their respective centroids
sequences evolve arbitrarily close to each other for an arbitrary but
finite time.

Proposition 1 (Standard Lloyd Mime). Assume µk
P

−→ µ. Pick any
0 < δ < 1, ε > 0 and integer N. There exists a sufficiently large k̄
such that, assuming cL

k̄
=ck̄, then

P
ck̄+k − cLk̄+k

 ≤ ε


≥ 1 − δ, k = 0 . . . ,N, (6)

where
P

−→ denotes convergence in probability in the space of
continuous functions (sup-norm) while cL

k̄
= ck̄ means that it is

possible to start the classical Lloyd algorithm from the configuration
reached by the alternative algorithm at k̄.

3. Problem formulation

We consider a group of N robots allowed to move in an
area represented by the convex set X . The final goal is to
simultaneously estimate an unknown map µ : X → R and to
provide a good partitioning P to minimize H (P, c(P), µ). We
assume to model the unknown µ as the realization of a zero-
mean Gaussian random field with covariance K : X × X →

R≥0. We restrict our attention to radial Mercer kernel functions,
i.e. K(a, b) = h(∥a−b∥), such that if ∥a−b∥ ≤ ∥c−d∥ then h(∥a−

b∥) ≥ h(∥c − d∥) and K(x, x) = λ, ∀x ∈ X . Additionally, each
agent i ∈ {1, . . . ,N} is assumed to have some mild computation,
communication and sensing capabilities. In particular, (i) denoting
with xi its current position, it can take a noisy measures of µ of the
form

y(xi) = µ(xi) + νi, (7)

where νi v N (0, σ 2), independent from µ and all other
measurement noises νj; (ii) it can send information either to a
central server/base station or to closely located agents; (iii) it
can move to a certain target-point bi assuming a simple robots’
dynamics with the following discrete update law:

xi,k+1 = xi,k + ui,k, ∀i ∈ {1, . . . ,N}, (8)

where xi,k = xi(kT ), i.e., each robot can move from location xi,k
at time t = kT to any desired location xi,k+1 = bi at time t =

(k+1)T . The ultimate goal is to position the robots in the centroids
of a good partition that minimizes H . Then, a good strategy
would initially promote estimation and later coverage of X .
The proposed strategy, based on information about the posterior
variance, probabilistically drives the robot towards estimation
or coverage. Namely, when the posterior variance is high, the
robots are more prone to perform estimation. When the value of
the variance decreases, the robots are more inclined to perform
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Fig. 1. Client–server communication architecture: robots send their input locations
to the server/base station while the server, after performing all the computation,
sends to the robots the target points.

coverage. However, conversely to the approach suggested in Choi
et al. (2008) for maximum seeking, since we never completely
switch from one phase to the other, convergence in probability ofµk to µ holds.

4. Server-based algorithm

In this section we present the first algorithm proposed. It is
based on a client–server communication architecture, see Fig. 1,
where the robots are allowed to communicatewith a central server
which (i) can store all the measurements taken by all the robots;
(ii) can store the last position of all the robots; (iii) can compute
centroids and Voronoi regions of all the robots; (iv) can send
information periodically to all robots every T seconds; (v) can send
information to each robot i; (vi) can compute and store an estimateµ of the function µ and its posterior variance V .

To achieve the goal described in Section 3, we propose the
Server-based algorithm described in Algorithm1 (denoted hereafter
as SB algorithm). It is convenient to divide the algorithm in two
parts. The first describes the operations executed by the server; the
second those executed by the robots.

We assume that each robot i, i = 1, . . . ,N , collects only
one measurement yi,k = y(xi,k) of the form (7) within the time
window (kT , (k + 1)T ), k ∈ N (line 29). Once the measurement
is taken, it is immediately transmitted to the server (line 30)
which stores it in memory. Then each robot listen to the server
to receive the next target location (line 32). By denoting with Jk
the set of measurements received by the server at iteration k, i.e.,
Jk := {(xi,k, yi,k) | i = 1, . . . ,N}, the complete information set
Ik available at the server at iteration k can be computed, ∀k ≥ 1,
simply as (lines 4–8)Ik = Ik−1 ∪ Jk, assuming I0 = ∅. For notational
convenience, it is possible to relabel the elements of Ik as

Ik =

(x(h), y(h)) | h ∈ {1, . . . , kN}


,

where (x(h), y(h)) =

xi,t , yi,t


for i ∈ {1, . . . ,N} and some

t ∈ {1, . . . , k}. Then, the server stores in memory an estimateµk(x) of µ(x) (line 10) and its corresponding posterior variance
Vk(x) (line 11) computed according to Eqs. (4)–(5), respectively.
The server moreover computes a Voronoi partition Pk =

{P1,k, . . . , PN,k} (line 13) and the corresponding list of centroidsck = {c1,k, . . . ,cN,k} (line 14). It is quite intuitive that in order
to improve the quality of the estimate of the function µ, the
measurements should be taken to reduce as much as possible
the posterior variance Vk(x). To do so, the SB algorithm uses a
strictlymonotonically increasing function F(Mi,k) of themaximum
Mi,k of the posterior (line 16) in the Voronoi region of the agent
i at time k. Each robot is forced to perform estimation (line 20)
Algorithm 1 Server-based (SB)
1: SERVER

Require: The server stores in memory µk,Vk(x), Ik, and has a clock that
triggers an event every T seconds.

2: if k = nT , n ∈ N then
3: Listen (input locations reception):
4: Jk = ∅

5: for i=1,. . . ,N do
6: Jk = Jk ∪ {xi,k, yi,k}
7: end for
8: Ik = Ik−1 ∪ Jk

9: Estimate update:
10: µk(x) = E [µ(x) | Ik] Eq. (4)
11: Vk(x) = Var [µ(x) | Ik] Eq. (5)

12: Partition and centroids update:
13: Pi,k = Wi(ck−1), Eq. (1)
14: ci,k = (


Pi,k
µk(q)dq)−1


Pi,k

qµk(q)dq.

15: Target-Points computation:
16: Mi,k = maxx∈Pi,k Vk(x), ∀i
17: pi,k = F(Mi,k)
18: ηi,k ∼ B(pi,k)
19: if ηi,k = 1 then
20: bi,k = argmaxx∈Pi,k

Vk(x)
21: else
22: bi,k =ci,k
23: end if

24: Target-Points Transmission:
25: xi,k+1 = bi,k (i.e. ui,k = bi,k − xi,k), ∀i
26: end if

27: ROBOTS
Require: A clock with sample time T or a submultiple of T .
28: if k = nT , n ∈ N then
29: Measurement collection: yi,k = µ(xi,k) + vi,k

30: Measurement transmission:

xi,k, yi,k


−→ Server

31: Listen (target points reception):
32: xi,k+1 = bi (alternatively ui,k = bi,k − xi,k)

33: Move to the new target-point.
34: end if

or to move toward the centroid (line 22) by using a randomized
strategy (line 18) where B denotes the Bernoulli distribution and
which is based on the value F(Mi,k), i.e. the higher the value of
F(Mi,k), the higher is the probability to perform an estimation step
(line 17–19). If an agent i is selected to perform estimation, the
server identifies the next target point for this agent by determining
the point with maximum posterior variance in its current region
Pi,k. The target points are then sent by the server to each robot
every period T (line 25).

The following proposition states that, under amild condition on
F(·), which determines whether an agent has to perform either an
estimation or a coverage step, themapµk, estimated bymeans the
SB algorithm, converges to the true µ.

Proposition 2 (Convergence of SB Estimate). Let us consider the SB
algorithm. Let F(M) : [0, 1] → [0, 1] be a continuous and strictly
monotonically increasing function such that F(M) > 0 for M > 0.
Thenµk

P
−→ µ.

We remark that the choice for the function F(·) leaves a certain
degree of freedom to the designer since it allows to regulate
estimation vs. coverage. For example, by choosing F(M) ≈ 1, ∀M
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Algorithm 2 SB-grid
19: if ηi,k = 1 then
20: bi,k = argmaxx∈Pi,k∩Xgrid

Vk(x)
21: else
22: bi,k = Π(ci,k)
23: end if

(but always strictly increasing), which corresponds to the strategy
inwhich the robots perform almost only exploration, the proposed
algorithm can also be interpreted as a cooperative strategy for
optimal sampling. Finally, observe that, thanks to Proposition 2, the
SB algorithm satisfies Proposition 1 as well.

5. Server-based discretized algorithm

It is well known the non-parametric estimation procedure,
described in Section 2.3, suffers from the curse of dimensionality.
In particular, due to matrix inversions the computational cost at
iteration k is of order O(k3N3). By exploiting a suitable recursive
implementation based on the Schur complement to compute the
matrix inverse, it is possible to reduce the cost to O(k2N3) which,
however, still grows unbounded. The standard approach to address
this problem is to discard old measurements (Xu et al., 2012,
2011). However this strategy might lead to poor performance,
hard to explicitly quantify. For this reason, we present here an
approximated version of the SB algorithm (denoted as SB-grid)
which, relying on a spatial discretization of the working area X , is
light, fast and with bounded computational burden per iteration.
As drawback, since the modified algorithm is based on a spatial
discretization, the result stated in Proposition 2 must be relaxed.
However, we derive explicit bounds on the estimation error as
function of the spacial resolution used to discretize X . The idea is
to constrain the robots to collect measurements only from a set of
predetermined finite number of input locationswhich are obtained
thanks to a spatial discretization of the continuous convex domain
X formally defined as follows:

Definition 3 (Sampled Space). Consider the finite set of m input
locations Xgrid := {xgrid,1, . . . , xgrid,m} ⊂ X where X ⊂ R2 is
a convex and closed polygon. Given the scalar ∆ > 0, we say that
set Xgrid forms a sampled space of resolution ∆ if

min
i=1,...,m

∥xgrid,i − x∥ ≤ ∆, ∀x ∈ X . (9)

Moreover, it is convenient to introduce the operator Π that
projects x ∈ X onto its closest point1 in Xgrid that is

X −→ Xgrid : x −→ Π(x) = arg min
a∈Xgrid

∥x − a∥.

To force the evolution of the robots on Xgrid, lines 19 ÷ 23
of Algorithm 1 are changed as shown in Algorithm 2. Note that,
according to line 20, the server now computes the input location
owning to Xgrid whichmaximizes the posterior variance restricted
on the grid, for each Voronoi region. This is generally different from
projecting the location where the posterior variance maximum is
located onto the grid, i.e.,

argmax
x∈Pi,k∩Xgrid

Vk(x) ≠ Π


argmax
x∈Pi,k

Vk(x)


.

Conversely, line 22 simply says to project the centroids,c ∈ X ,
onto the closer points owing toXgrid. Observe that, since the grid is

1 If such point is not unique, we randomly select one point in the minimizer set.
composed of a finite number of locations, new measurements can
fall exactly over the same input location. Thus, to avoid storing all
the collected measurements, it is convenient to associate to each
location xi ∈ Xgrid, the virtual measurements wi,ℓi computed as

wi,ℓi =
ℓi − 1

ℓi
wi,ℓi−1 +

1
ℓi
yi,

where yi is the ℓith measurement taken in xi. Accordingly, the
variance associated to wi,ℓi is given by σ 2

i =
σ 2

ℓi
and we defined

withΣ a diagonal matrix collecting these noise variances, i.e.Σ =

diag({σ 2
i }

n
i=1). When two or more measurements are collected

on the same input location, the size of the sampled Kernel K̄
does not vary. It increases only when an input location on the
grid is visited for the first time. When all of these locations are
visited at least once, the sampled kernel does not change any
more: it reaches its maximum possible size, becoming the m × m
matrix Kgrid, covariance of µ sampled on Xgrid, whose elements
are given by [Kgrid]ki = K(xgrid,k, xgrid,i). Conversely, every time
a new measurement is collected, one has to update the variance
matrix Σ and the vector with the virtual measurements w =

[w1,ℓ1 , . . . , wn,ℓn ]
T with n ≤ m. The function estimate and its

related posterior variance can then be computed using, as usual,
Eqs. (4)–(5), evaluated using only the n virtual measurements and
their associated noise variances.

The following proposition characterizes of the asymptotic
behavior of the SB-grid algorithm.

Proposition 4 (Convergence of SB-grid Estimate). Let us consider the
SB-grid algorithm. If F(M) : [0, 1] → [0, 1] is a continuous and
strictly monotonically increasing function such that F(M) > 0 for
M > 0, then

µk(x)
P

−→ µ(x), ∀x ∈ Xgrid. (10)

The following result instead characterizes the asymptotic
performance of the estimator on a generic input location, possibly
falling outside Xgrid. In particular it provides an explicit bound on
the estimation error due to the spatial discretization introduced.
Before stating it, it is convenient to denote with kgrid(x) the row
vector

kgrid(x) =

K(x, xgrid,1) . . . K(x, xgrid,m)


.

Finally, recall that K(a, b) = h(∥a − b∥) and λ = K(x, x).

Proposition 5 (SB-grid Estimation Error Bounds). Let the assump-
tions of Proposition 4 hold and F(0) = 0. If Xgrid is a sampled subset
of the space X of resolution ∆, as in Definition 3, one has

lim
k→∞

Vk(x) = λ − kgrid(x)K−1
gridkgrid(x)

⊤, (11)

where convergence is in probability and holds also uniformly w.r.t. x.
In addition, the following uniform bound holds

lim
k→∞

Vk(x) ≤ λ −
h2 (∆)

λ
, ∀x ∈ X . (12)

Finally, for sufficiently small∆ and the specific case of Gaussian kernel

K(a, b) = λe
−

∥a−b∥2

ζ2 , we have

λ −
h2 (∆)

λ
≈

λ∆2

ζ 2
. (13)
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Fig. 2. Asymptotic values of the max of the posterior V as function of ∆

ζ
for a

Gaussian kernel with standard deviation ζ (Eq. (11)).

When adopting the grid-based strategy, measurements can be
collected only over the input locations contained in the finite set
Xgrid. Using basic results on estimation of Gaussian processes, one
can see that Eq. (11) is the posterior variance of µ conditional
on the perfect knowledge of the function on the grid. Hence,
the above result shows that our updating mechanism ensures
convergence to theminimumpossible error compatiblewithXgrid.
Eq. (12) then shows how the posterior variance can be made
uniformly and arbitrarily small by choosing a ∆ sufficiently small.
In particular, from (13) one sees that the error converges to zero
at least quadratically in ∆ when a Gaussian kernel is adopted.
Fig. 2 shows the behavior of the bound of the asymptotic posterior
variance of Eq. (11).

6. Distributed gossip algorithm

Here, we present a distributed algorithm to solve the problem
of estimation and coverage. Differently from the client–server
communication architecture used in both the SB and SB-grid
algorithms, here the robots exploit a peer-to-peer communication
architecture. According to this architecture, each robot (peer) is
allowed to communicate with one neighboring peer at a time in
order to exchange local information. The idea is to combine a local
estimation performed by each robot, based on all its collected
measurements, with the gossip coverage algorithm presented in
Bullo, Carli, and Frasca (2012). To be more precise, each robot is
assumed to be able to:

• store its collected measurements in the local set Ii;
• store its region of competence Pi;
• compute a local estimate µi|Pi of µ and the corresponding

posterior variance Vi|Pi over Pi, based on Ii;
• compute its local centroidci, according toµi;
• communicatewith only one robot at a time (bidirectional gossip

or peer-to-peer communication), to update Pi.

The algorithm we propose, which we refer to as Distributed Gossip
algorithm (denoted hereafter as DG) is formally described in
Algorithms 3 and 4.

Observe that the algorithm consists of two main parts, namely,
(i) local estimation and coverage (Algorithm 3); and (ii) gossip
communication and partitions update (Algorithm4). The two phases
are completely asynchronous and uncorrelated one from the other.
During phase (i) each robot acts independently according to a local
clock. For ease of notation we used the subscript k to identify
the local time instants t ik. Phase (ii) of the algorithm concerns
with the communication between agents and the update of the
partition. Observe that this point is crucial for the distributed
implementation of the algorithm. Indeed, the partition update
cannot be implemented according to the classical approach since
to iteratively update the partition Pk following Lloyd’s equation
(3), full information about the current, at the next centroids of
Algorithm 3 DG – Local Estimation and Coverage
Require: Each robot stores in its local memoryµi,k, Vi,k(x), Ii,k.
1: for t i1, t

i
2, . . . , t

i
k, . . . do

2: Measurement collection:
3: Ii,k = Ii,k−1 ∪ {xi,k, yi,k}

4: Estimate update:
5: µi,k|Pi,k = E


µ(x) | Ii,k


constrained to Pi,k

6: Vi,k|Pi,k = Var

µ(x) | Ii,k


constrained to Pi,k

7: Centroid update:
8: ci,k = (


Pi,k
µi,k(q)dq)−1


Pi,k

qµi,k(q)dq.

9: Target-Point computation and Movement:
10: Mi,k = maxx∈Pi,k Vi,k(x)
11: pi,k = F(Mi,k)
12: ηi,k ∼ B(pi,k)
13: if ηi,k = 1 then
14: xi,k+1 = argmaxx∈Pi,k

Vi,k(x)
15: else
16: xi,k+1 =ci,k
17: end if
18: end for

Algorithm 4 DG – Gossip Comm. and Partitions Update
1: for T1, T2, . . . , Tk, . . . do
2: Two robots, say i,j, communicate with each other

3: if i and j are neighbors (i.e., Eq. (14) is verified) then

4: Centroids transmission:
5: The robots exchange their centroidsci,k,cj,k
6: Partitions update:
7: They update their partitions according to Eq. (15)
8: end if
9: end for

all robots are required. Thus, in a distributed framework, where
only local exchange of partial information is allowed, this cannot
be achieved. To workaround this issue, following the approach
proposed in Bullo et al. (2012), we implement a gossip coverage
in which only a pair of robots, say (i, j), establishes a bidirectional
gossip-like communication: firstly the robots check if they are
neighbors, namely, if

Pi ∩ Pj ≠ ∅; (14)

secondly, if the above condition is satisfied, the robots exchange
their centroids, and update the partition as

Pi,k =


q ∈


ℓ∈{i,j}

Pℓ,k−1

∥q −ci,k∥ ≤ ∥q −cj,k∥,
Pj,k =


q ∈


ℓ∈{i,j}

Pℓ,k−1

∥q −cj,k∥ ≤ ∥q −ci,k∥. (15)

If they are no neighbors, then, no update is performed, i.e., Pi,k =

Pi,k−1, Pj,k = Pj,k−1. Note that, only agents i, j are involved in
the updating process at iteration k which means that all the other
partitions remain unchanged, namely, Pℓ,k = Pℓ,k−1, ∀ ℓ ≠

i, j. In general, the Tk iterations, describing phase (ii) of the DG
algorithm, are in general different from all the t ik. Moreover, during
the interval [Tk−1, Tk] the partition P does not change and the
robots perform phase (i). Similarly to Proposition 2, we are able
to prove asymptotic convergence of the estimated functionµ toµ.

Proposition 6 (Convergence of DG Estimate). Assume F(·) :

[0, 1] → [0, 1] is continuous and strictly monotonically increasing
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(a) Evolution of the cost function H of Eq. (2) computed with respect to
the robots’ positions.

(b) Evolution of the maxM of the posterior variance V .

Fig. 3. Comparison of the proposed SB algorithm against standard Lloyd, the SB under motion constraints, the Switch algorithm inspired by Choi et al. (2008), for two
different values of switching threshold, and the Periodic Strategy with period T = 5 iterations. Average over 100 Monte Carlo simulations.
and satisfying


k F(σ 2/k) = ∞. Then µk
P

−→ µ, where the
estimate is point-wise defined asµk(x) := µi,k(x) s.t. x ∈ Pi,k, i = {1, . . . ,N}.

Note that, thanks to Proposition 6, a result similar to
Proposition 1 holds for the DG algorithm as well. In this case,
instead of the classical Lloyd, it is possible to mimic in probability
the evolution of the Gossip Coverage (Bullo et al., 2012) using µ.

Some remarks about the implementation of the DG algorithm
are due. First note that {Pi}

N
i=1 no more coincide with standard

Voronoi partitions. They can indeed consist of non-convex regions.
Yet, as proved in Bullo et al. (2012), the partitions converge
to a set of proper centroidal Voronoi partitions. Nonetheless, in
general, a non-convex set can be expressed as the union of a finite
number of convex polygons with disjoint interiors and that each
polygon can be suitably described as an ordered list of vertices.
Thus, in practice, condition (14) is verified if two robots share
a piece of their boundaries which can be checked by the robots
just exchanging lists of point. Once verified (14), two robots need
to update their partitions. It is common engineering practice to
discretizeX into a finite number of cells. In this case, the partitions
consist of subsets of cells and the robot, to perform (15), simply
need to exchange subsets of cells between each other (Durham
et al., 2012). Finally, even under robots’ motion constraints (see
Section 7), a careful analysis of the proof shows that probabilistic
convergence still holds just requiring that, during the estimation
phase, a neighborhood of radius ε > 0 of the location where the
maximum of the posterior is attained is reached with probability
not less than a constantM(ε) > 0.

7. Simulations

In this section we provide some simulations showing the
performances of the proposed algorithms. All the simulations are
run inMATLABon an Intel Core i7-4790desktopmachinewith 8GB
of RAM. We consider a team of N = 8 robots in the normalized
squared domain X = [0, 1] × [0, 1]. As kernel, we choose the
Gaussian

K(x, x′) = λe
−

∥x−x′∥2

2ζ2 , λ = 1, ζ = 0.2.

The unknown sensory function µ is chosen to be a combination of
two bi-dimensional Gaussians2:

µ(x) = 5
2

i=1

e−
∥x−µi∥

2

0.01 , µ1 =


0.8
0.2


, µ2 =


0.5
0.7


.

2 Given the universal representing properties of the Gaussian kernel, we do not
report tests with different sensory functions.
We analyze the behavior of the algorithms for Fα(M) = Mα, α =

2, being the max of posterior variance M normalized between
[0, 1]. This choice forces the robot to be slightly more prone to
perform estimation rather than coverage. It is recalled that by
changing α it is possible to force the robots to bemore prone either
to one phase or the other.

7.1. Comparison among centralized strategies

Here, the SB is compared against the following algorithms:

• The standard Lloyd algorithm (3), which assumes perfect
knowledge of µ.

• A ‘‘Switch’’ strategy, inspired by Choi et al. (2008), in which
the robots, after an estimation-only phase, when the maximum
of the posterior variance reaches a predefined threshold,
switch to a coverage-only phase permanently. We compare the
performance for two values of the threshold.

• A ‘‘Periodic Strategy’’ in which robots perform estimation and
coverage periodically for T iteration each.

• Also, we simulate our SB algorithm in the presence of motion
constraints. Namely, the robots are constrained within a disk of
radius r = 0.1.

We compare the algorithms in terms of (i) cost function
H(P, x, µ) (Eq. (2)) computedwith respect to the robots positions;
and (ii) evolution of the maximum of the posterior variance
defined as Mk = maxx∈X Vk(x). The choice of plotting H w.r.t.
x rather than c(P) is dictated by the simple fact that the robots,
conversely to the standard Lloyd algorithm, do not always lie on
the corresponding centroids. Thus, we believe that H(P, x, µ)
better captures the actual coverage cost. Observe that this choice
is consistent with the standard Lloyd. Indeed, since x ≡ cL, in this
case we retrieve the standard locational optimization cost.

Fig. 3(a) shows the evolution of H as a function of number
of iterations k. As expected, the classical Lloyd is characterized
by a non-increasing behavior. Differently, the other algorithms
are characterized by a non-monotonic behavior. This is due to
the fact that they do not always move on the centroids of the
partition. Indeed, in the SB the robots randomly move either to
the estimated centroids or to the locations where the maximum
of the posterior variance is attained. Differently, the behavior of
the Switch algorithm inspired by Choi et al. (2008) largely depends
on the values of the threshold. Indeed, for small values the robots
are forced to perform estimation for an unreasonable number of
iterations. For large values the robots are not able to perform a
good function estimation as suggested by the evolution of the
posterior variance shown in Fig. 3(b). Moreover, far any value of
the threshold, the estimated function never converges to the true
one. Regarding the Periodic strategy, even if it should be able
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Fig. 4. Comparison between the SB and the SB-grid algorithms for different total
number of points p2: evolution of the max of the posterior variance averaged over
100 Monte Carlo runs.

Table 1
SB vs. SB-grid algorithms for different total number of points p2 .

p2 9 16 25 36 SB

Exe. time (s) 2.3 2.4 3.9 4.7 865.4

to asymptotically reconstruct the sensory function, it does not
well behave in terms of coverage cost. Finally, the proposed SB
under practical motion constraints is characterized by a slower
convergence rate but still behaves well in terms of coverage.
Thus, the proposed probabilistic strategy, by letting the robots to
automatically trade-off between estimation and coverage is able to
simultaneously estimate the true sensory functionwhile providing
a good coverage performance.

7.2. Comparison between the SB and SB-grid algorithms

In this section we compare the SB and the SB-grid algorithms.
Since X has been chosen to be equal to the square set [0, 1]2, it
is convenient to let Xgrid be a grid of p equally spaced points per
side. Thus, |Xgrid| = p2. Fig. 4 shows the performance, in terms of
max of the posterior variance, of the algorithms for different levels
of space discretization, i.e., different total number of points p2. It
can be seen that the grid based approximation is slightly faster
during the first iterations but it reaches its asymptotic estimation
error variance in more or less 150 iterations. Conversely, in the SB
the max of the posterior decreases, asymptotically converging to
zero. However, in terms of execution time the SB-grid algorithm is
much lighter than the SB algorithm, see Table 1. This is the major
advantage of using this implementation since, given a desired final
value for the max of the posterior variance according to Eq. (11) of
Proposition 5 (see Fig. 2 as well which shows the limit values of the
max of the posterior as function of∆/ζ ), the execution time can be
reduced of several orders of magnitude.

7.3. Comparison among distributed strategies

In this section we compare the proposed DG algorithm with
an algorithm, which we refer to as DG Switch, in the same flavor
the Switch strategy presented in the previous sections. In the DG
Switch, as in the DG algorithm, the robots perform estimation
based on their own set Ii and communicate only with neighboring
peers to update their partitions. However, differently from the our
DG approach, the controller, instead of driving the robots based on
a stochastic strategy, forces the robots to perform estimation until
the maximum of the posterior variance, computed within each
robot’s partition, reaches a certain threshold. After that, the robots
permanently switch to coverage. Fig. 5(a)–(b) plot the evolution of
the cost functionH and of themaximum among themaxima of the
posterior variances of all the robots, i.e.,

Mk := max
i∈{1,...,N}

( max
x∈Pi,k

Vi,k(x)).

Similarly to the corresponding centralized strategies, the proposed
DG algorithm falls in between the DG Switch, which has been
simulated for two different values of the predefined threshold.
Once again for small values of the threshold the DG Switch keeps
doing estimation not being able to perform a good coverage.
While for large values it is not able to perform estimation. As
concluding remark, it is worth stressing that, even if from Fig. 5(b)
the DG Switch seems to outperform the proposed strategy, the DG
algorithm converges to the true sensory function and thusMk → 0
asymptotically.

8. Conclusions

In this work we considered the problem of multi-robot si-
multaneous estimation and coverage via non-parametric estima-
tion. We explored two different communication architectures,
namely client–server (centralized) and peer-to-peer (distributed),
for which we were able to prove convergence in probability of the
estimatedmap to the truemapwhile also providing asymptotic be-
havior of the robots similar to the one provided by the Loyd’s algo-
rithm for optimal coverage. The transition from exploration to cov-
erage is smooth and can be easily tuned via the transition function
F(·). We also provided an efficient numerical approximated esti-
mation algorithm for which the asymptotic estimation error can
be computed a-priori. One interesting future direction regards the
extension to dynamic scenarios.

Appendix

A.1. Proof of Proposition 1

Let U be the set of all the continuously differentiable sensory
functions defined over X . Let U be equipped with a norm ∥ · ∥, for
instance, ∥µ∥ = maxx∈X µ(x).

Let us define G (c; µ) : X N
× U → X N as G (c; µ) :=

c (W (c)), where the operator c computes the centroids according
to the sensory function µ. It is known that the map G, above
defined, is continuous on both arguments (see Bullo et al., 2012).
Observe that cLk+1 = G


cLk; µ


and ĉk+1 = G


ĉk; µ̂k


.

We can write

∥ĉk+1 − cLk+1∥ =
G ĉk; µ̂k


− G


cLk; µ


≤
G ĉk; µ̂k


− G


ĉk; µ

+
G ĉk; µ


− G


cLk; µ

 .

For continuity of the operatorG on bothX N , which is compact, and
on U , it follows that there exist Lµ > 0 and L̄µ = maxc∈X N Lµ;c
such thatG ĉk; µ


− G


cLk; µ

 ≤ Lµ∥ĉk − cLk∥,G ĉk; µ̂k

− G


ĉk; µ

 ≤ L̄µ∥µ̂k − µ∥.

Hence ∥ĉk+1 − cLk+1∥ ≤ Lµ∥ĉk − cLk∥+ L̄µ∥µ̂k −µ∥. Assuming there
exists a positive integer k̄ such that ∥µ̂k − µ∥ ≤ ξ for all k ≥ k̄,
and such that ĉk̄ = cL

k̄
, then it follows, for k > k̄,

∥ĉk − cLk∥ ≤

k
j=k̄

L(j−k̄−1)
µ L̄µξ .

To conclude the proof, note that from the assumption thatµk
P

→ µ
and the definition of convergence in probability, it follows that for
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any positive integer N , positive real number ε and real number δ
such that 0 < δ < 1, there exist a positive real number ξ > 0 and
a positive integer number k̄ such that the following two facts are
verified

• P
µ̂k − µ

 ≤ ξ for all k ∈

k̄, . . . , k̄ + N


≥ 1 − δ,

•
N

j=k̄ L
(j−k̄)
µ L̄µξ ≤ ε.

A.2. Proof of Proposition 2

Without loss of generality, a system with only one agent is
considered. For every ε > 0, define the process x̄k as follows:

x̄k =

xk ifMk ≥ ε
Ck with probability (1 − pε) ifMk < ε
Ek with probability pε ifMk < ε

(A.1)

where pε = minx∈[ε,1] F(x), Ck is the location of the centroid and Ek
is the location where the posterior variance attains its maximum.
We also define Īk as the set of measurements collected by the
process x̄k up to instant k, V̄k(x) = Var


µ(x)|Īk


the posterior

variance at the input location x associated to the process x̄k and M̄k
themaximumof V̄k w.r.t. x. First, we prove that∀ε ≥ 0, ∀δ ∈ (0, 1]
there exists k0 such that, ∀k ≥ k0, one has P [Mk ≤ ε] ≥ 1 − δ.
Note that, in view of the definition of xk and x̄k, the two processes
coincide at k and/or it holds thatMk ≤ ε, M̄k ≤ ε. Then, one always
has

P

M̄k ≤ ε


= P [Mk ≤ ε] . (A.2)

In view of (A.2), our strategy is to prove that x̄k satisfies the desired
condition which then will immediately extend to xk. As also clear
in the sequel, the key advantage of using x̄k, in place of xk, is
that it avoids the introduction of conditional probability measures
difficult both to define and to handle.

Now, consider the subsequence x̄kj extracted by x̄k such that
ki < ki+1 for every i and for every kj the agent is moving to
Ekj . The length of this subsequence is infinite with probability one
since x̄k canmove to themaximumposterior variance locationwith
probability at least pε at every k. It is an elementary algebraic fact
that, for every ε > 0, there exists a pair ᾱ and m̄ such that:

λ −
(λ − ᾱ)2

λ +
σ 2

m̄

≤ ε.

By continuity of the kernel, there exists a finite partition, function
of ε, ᾱ, m̄, given by subsets Dj ⊆ X such that K(x, x∗) ≥ λ −

ᾱ, ∀x, x∗
∈ Dj (recall that K(x, x) = λ). Since there is a finite

number of subsets Dj, at least one of them is visited infinite times
by the subsequence x̄kj with probability one. This implies that, with
probability not smaller than 1−δ, there always exists a time instant
ka such thatDj has been visited at least m̄ times and another instant
kb > ka where Dj is visited again. Now it is not restrictive to
consider only m̄measurements falling in Dj, denoted by z j1, . . . , z

j
m̄

and collected on the input locations x̄j1, . . . , x̄
j
m̄. Let K̄j be the m̄× m̄

kernel matrix with (k, i) entry [K̄j]ki = K(x̄jk, x̄
j
i), i.e. obtained

sampling the kernel K on the input locations falling in Dj. We have
Tr(K̄j) =


Λ(K̄j) = m̄λ, where Λ(K̄j) is the set of real and non

negative eigenvalues of K̄j. Then, one has K̄j ≼ m̄λI so that

(K̄j + σ 2I) ≼ (m̄λ + σ 2)I ⇒ (K̄j + σ 2I)−1
≽ (m̄λ + σ 2)−1I.

It comes that,with probability at least 1−δ, for every input location
x ∈ Dj one has

Var

µ(x)|Īk


≤ Var


µ(x)|z j1, . . . , z

j
m̄


= K(x, x)

−

K(x̄j1, x) · · · K(x̄jm̄, x)


× (K̄j + σ 2I)−1

K(x̄j1, x)
...

K(x̄jm̄, x)



≤ λ −

m̄
h=1

K(x̄jh, x)
2

m̄λ + σ 2
≤ λ −

m̄(λ − ᾱ)2

m̄λ + σ 2

= λ −
(λ − ᾱ)2

λ +
σ 2

m̄

≤ ε.

The above equations show that, with probability not smaller than
1 − δ, maxx∈Dj V̄ka(x) ≤ ε and M̄kb ≤ ε. In fact, since at instant
kb the subset Dj is visited again, the input location where V̄kb is
maximized falls again in Dj so that the maximum of the posterior
variance over the entire domain cannot be large than ε. In view
of (A.2), this implies that Var [µ(x)|Ik] is converging uniformly to
zero in probability. Now, defineµk = µ−µk. From the Chebyshev
inequality, we have that ∀x, s

P

|µk(x)| ≤ sd | Var [µ(x)|Ik] = d2


≥ 1 − 1/s2. (A.3)

Note that the conditioning event is the posterior variance of the
reconstruction error which has been just proved to go uniformly
to zero in probability. Now, fix another arbitrary ε > 0, 0 < δ < 1
and define δ̄ = 1−

√
1 − δ. We can find k0 such that ∀k ≥ k0, with

probability at least 1 − δ̄, one has

max
x

Var [µ(x)|Ik] ≤ δ̄ε2.

Setting s2 = 1/δ̄ in the Chebyshev inequality above, since the
conditioning event holds with probability at least 1− δ̄, we obtain
(a) Evolution of the cost function H of Eq. (2) computed with respect to
the robots’ positions.

(b) Evolution of the maximumMk = maxi(maxx∈Pi,k Vi,k(x)).

Fig. 5. Comparison of the proposed DG algorithm against the DG Switch algorithm inspired by Choi et al. (2008), for two different values of switching threshold. Average
over 100 Monte Carlo simulations.
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that ∀k ≥ k0 the event

|µk(x)| ≤ sd = ε


δ̄/


δ̄ = ε

has probability not smaller than (1−s−2)(1−δ̄) = (1−δ̄)2 = 1−δ.
This shows that, in probability,µk is going to zero in the sup-norm
topology and concludes the proof.

A.3. Proof of Propositions 4 and 5

As already noticed in Section 5, when measurements can be
collected only over the input locations contained in the finite set
Xgrid, the estimation process at a generic instant k is equivalent
to reconstructing the function µ from measurements wi,ℓi =

µ(xgrid,i) + νi, where, conditional on the process history up to
instant k, νi ∼ N (0, σi), σ 2

i =
σ 2

ℓi
being ℓi the number of

visits at xgrid,i. The proof of Proposition 2 can be now followed
just replacing the function domain X with Xgrid, with the Voronoi
regions covering the entire X defined at every instant k by a map
having as arguments only the estimates of them random variables
µ(xgrid,i). One then obtains that ℓi → ∞ for i = 1, . . . ,m, i.e. the
posterior variances of all the µ(xgrid,i) go to zero. Hence, Eqs. (10)
and (11) immediately follow. To obtain Eq. (12), note the following
two facts. First, given any x ∈ X there exists xgrid,i ∈ Xgrid such
that ∥x − xgrid,i∥ ≤ ∆. Second, the r.h.s. in (12) is exactly the
posterior variance of µ(x) conditional on the perfect knowledge of
µ(xgrid,i) with ∥x − xgrid,i∥ = ∆. Eq. (12) is then obtained recalling
that, if ∥a − b∥ ≤ ∥c − d∥ then h(∥a − b∥) ≥ h(∥c − d∥) and
K(x, x) = λ, ∀x ∈ X . Finally, Eq. (13) is just the expansion of the
r.h.s. of (12) around ∆ = 0 for the Gaussian kernel case.

A.4. Proof of Proposition 6

The proof consists of two steps. First, for each agent we prove
that it performs infinitely many times ‘‘estimation’’, that is, it
moves infinitely many times on the max of the posterior variance
computed inside its region. Second, we prove that, given any
arbitrarily small value ε, for every agent, the posterior variance
goes below ε over any point of its region. More specifically, by
denoting with P(k) the sequence of regions associated to one
robots, we show that ∀ε ∃k0 s.t. ∀k ≥ k0, maxx∈P(k) Vk(x) ≤

ε. Now, by letting vk :=
λσ 2

kλ+σ 2 and assuming to collect one
measurement per iteration, if a is an integer satisfying a ≥ σ 2/λ,
one easily hasMk := maxx Vk(x) ≥ vk ≥

σ 2

k+a . Monotonicity of F(·)
then ensures that

∞
k=1

F(Mk) ≥

∞
k=1

F(vk) ≥

∞
k=a+1

F(σ 2/k) = ∞. (A.4)

Letting χ(·) be the indicator function of an event, for any agent it
holds that
# of estimation events =


k

χ(uk ≤ F(Mk))

≤


k

χ(uk ≤ F(vk)), (A.5)

where uk are independent uniform random variables on the unit
interval. Combining Eqs. (A.4), (A.5) and the second Borel–Cantelli
lemma,3 we have

P

any robot performs infinitely many

times estimation


= 1. (A.6)

3 To apply the Borel–Cantelli lemma, (A.5) is necessary. Indeed, since the Mk are
correlated r.v., χ(uk ≤ F(Mk)) are correlated too, while the χ(uk ≤ F(vk)) are all
mutually independent.
Hereby, ω denotes an element in the probability space contained
in the event in the lhs of (A.6). Then, consider the trajectory of one
agent corresponding to ω. Similarly to Appendix A.2, by continuity
of the kernel, there exists a finite partition, function of ε, given by
subsets Dj ⊆ X such that the value of the max of the posterior in
Dj goes below ε if we take at leastm(ε) measurements inside Dj.

Recall the regions associated to the robot are denoted by P(k).
To each P(k) we associate Ik which is the union of smallest group
of Dj containing P(k), i.e.,

Ik :=


j

Dj | Dj ∩ P(k) ≠ ∅, P(k) ⊆


j

Dj


.

One Dj contributes to the computation of the max of the posterior
if for infinitelymany times has non null intersectionwith theP(k).
Indeed, if Dj is not intersected infinitely many times by the P(k),
there exists k̄ such that Dj does not influence the computation of
the max for k ≥ k̄.

Fix oneDℓ which contributes to the computation of themax. Let
us define the subsequence Sk from Ik such that (i) Dℓ ⊆ Sk, ∀k and,
(ii) if the pair (k, j) satisfies Dj ⊆ Sk, then the event Dj ⊆ Sk occurs
for infinitely many k.

The length of Sk is infinite because, by construction, Dℓ

intersects Ik for an infinite number of k and Ik can be chosen among
a finite number of subsets independent of k.

Now, partition the Dj contained in all the Sk into two groups
(of arbitrary cardinality) denoted by A and B. For the sake of
contradiction, assume that the max of the variance in any Dj ∈ A
goes below ε and that this does not happen in B. There exist two
scenarios: (i) Sk contains infinitely many times only Dj ∈ A or only
Dj ∈ B. This is absurd for construction. (ii) Sk contains infinitely
many times a non null intersection of A and B. Thus, at least one
Dj ∈ B is visited infinitely many times (for estimation purposes)
since the value of the posterior is larger than that over A. Then, the
value of the posterior in at least one Dj ∈ B must go uniformly
below ε which is absurd by definition of B. So, in all the Dj forming
Sk, and so also in Dℓ, the posterior variance goes uniformly below
ε. The proof is concluded by repeating the argument for any robot,
any Dℓ and ω.
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